Климатические изменения и энергетическая инфраструктура в Российской Арктике

Авторы

  • Дмитрий Соловьев Институт океанологии имени П. П. Ширшова РАН
  • Любовь Шилова Московский государственный строительный университет
  • Olga Razorenova Институт океанологии имени П. П. Ширшова РАН

Загрузки

DOI:

https://doi.org/10.51461/projectbaikal.71.1941

Ключевые слова:

Российская Арктика, устойчивое развитие, среда обитания, климат, экология, туризм, информационное моделирование, энергетическое моделирование

Аннотация

Рассматривается современное состояние и актуальные вопросы построения энергетической инфраструктуры Российской Арктики и ее защиты в условиях воздействия экстремального климата. Анализируются инфраструктурные проекты, реализованные в арктических регионах России в рамках концепции «энергетического перехода». Подчеркивается важность учета климатических и экологических факторов, рекреационный характер места и необходимость поиска новых решений в противодействии современным климатическим вызовам. Обсуждаются возможности реализации новых подходов в сфере проектирования объектов капитального строительства, основанные на интеллектуально-цифровых системах строительного и энергетического моделирования и их роль в повышении устойчивости энергетической инфраструктуры региона.

Как цитировать

Соловьев, Д., Шилова , Л., & Razorenova , O. (2022). Климатические изменения и энергетическая инфраструктура в Российской Арктике . проект байкал, 19(71), 50–57. https://doi.org/10.51461/projectbaikal.71.1941

Опубликован

2022-03-07

Выпуск

Раздел

refereed articles - рецензируемые статьи

Библиографические ссылки

Aalto, J., Karjalainen, O., Hjort, J., & Luoto, M. (2018). Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness. Geophysical Research Letters, 10(45), 4889–4898.

Batenin, V. M., Bushuev, V. V., & Voropay, N. I. (2017). Innovative electric power industry-21. Moscow: ITs Energiya.

Bonenberg, W., & Wei X. (2015). Green BIM in sustainable infrastructure. Procedia Manufacturing, 3, 1654–1659.

Chen, S. (2018). A green building information modelling approach: building energy performance analysis and design optimization. MATEC Web of Conferences. (169, pp. 01004). DOI:10.1051/matecconf/201816901004.

Ebrahim, A., & Wayal, A. S. (2019). Green BIM for Sustainable Design of Buildings. International Conference on Reliability, Risk Maintenance and Engineering Management (pp. 185–189).

Ginzburg, A., Shilova, L., Adamtsevich, A., & Shilov, L. (2016). Implementation of BIM-technologies in Russian construction industry according to the international experience. Journal of Applied Engineering Science, 4(14), 457–460.

Golubeva, E., Tulskaya, N., Tsekina, M., & Kirasheva, N. (2016). Ecological tourism in protected natural areas of the Russian Arctic: prospects and challenges. Arctic and North, 2(23), 66–79. DOI:10.17238/issn2221-2698.2016.23.66.

Grebenets, V., Streletskiy, D., & Shiklomanov, N. (2017). Geotechnical safety issues in the cities of Polar Regions. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY.

Kachurak, V. (2018, March 18). Energetika. "Priiazlomnaya" - rukotvornyi ostrov. Power industry. "Prirazlomnaya", a man-made island. Retrieved June 28, 2019, from https://cont.ws/@predator85vk/886465

Nefedova, L. V., & Solovyev, D. A. (2019, April 25). Problems and risks of RES development for tourism in the Arctic region. Tourism and recreation: fundamental and applied research: Proceedings of the XIV scientific and practical conference (pp. 417-424). M. V. Lomonosov MSU, Faculty of Geography. Moscow: ANO Dialog Kultur.

Morgunova, M. (2021). The role of the socio-technical regime in the sustainable energy transition: A case of the Eurasian Arctic. The Extractive Industries and Society, 3(8), 100939. DOI:10.1016/j.exis.2021.100939.

Morgunova, M. O., Nefedova, L. V., & Solovyev, D. A. (2019). Budushchee energeticheskogo kompleksa Arkticheskoi zony Rossiiskoi Federatsii s tochki zreniya ustoichivogo razvitiya [The future of energy complex of the Arctic zone of the Russian Federation from the sustainable point of view]. Seminar of higher educational institutions on thermophysics and power: Proceedings of All-Russian conference with international participation (pp. 280–281).

Morgunova, M. O., Solovyev, D. A., Nefedova, L. V, & Gabderakhmanova, T. S. (2020). Renewable energy in the Russian Arctic: Environmental challenges, opportunities and risks. Journal of Physics: Conference Series, 1565, 012086.

Nefedova, L. V., Solovyev, A. A., Shilova, L. A., & Solovyev, D. A. (2016). Risk factors during construction of power plants using renewable energy sources. Vestnik MGSU, 12, 79–90. DOI:10.22227/1997-0935.2016.12.79-90.

Otsenochnyi doklad Rosgidrometa o klimaticheskikh riskakh na territorii Rossiiskoi Federatsii [Roshydromet assessment report on climate risks on the territory of the Russian Federation] (2017). Hydrometcenter of Russia. Retrieved September 14, 2021, https://meteoinfo.ru/novosti/14658-opublikovan-otsenochnyj-doklad-rosgidrometa-o-klimaticheskikh-riskakh-na-territorii-rossijskoj-federatsii

Pavlenko, V. I. (2013). Arctic zone of the Russian Federation in the system of national interests of the country. Arctic: Ecology and Economy, 4, 12.

Pavlenko, V. I., Melamed, I. I., Kutsenko, S. Yu., & Avdeev, M. A. (2015). Shaping of contour of the Arctic zone of the Russian Federation as a subject of governance. Izvestiya Rossiiskoi akademii nauk. Seriya geograficheskaya, 4, 5-11.

Perfilyev, B. N., Terentyev, N. E. (2016). Ecologo-klimaticheskie riski sotsialno-ekonomicheskogo razvitiya Arkticheskoi zony Rossiiskoi Federatsii [Ecological and climate risks of the social and economic development of the Arctic zone of the Russian Federation]. Ecologichesky vestnik Rossii, 1, 32–39.

Shcherbina, E. (2018). Tayanie vechnoi merzloty ugrozhaet rossiiskim truboprovodam [Melting of permafrost threatens Russian pipelines]. Retrieved September 12, 2021, from https://chrdk.ru/news/tayanie_vechnoi_merzloty_ugrozhaet_rossiiskim_truboprovodam

Sherstyukov, B. G. (2016). The climatic conditions of the Arctic and new approaches to the forecast of the climate change. Arctic and north, 24, 39–67.

Shilov, L., Evtushenko, S., Arkhipov, D., & Shilova, L. (2021). The prospects of information technology using for the analysis of industrial buildings defects. IOP Conference Series: Materials Science and Engineering, 1(1030), 12039.

Slepchenko, S. M., Gusev, A. V., Svyatova, E. O., Hong, J. H., Oh, C. S., Lim, D. S., & Shin, D. H. (2019). Medieval mummies of Zeleny Yar burial ground in the Arctic Zone of Western Siberia. PLOS ONE, 1(14), e0210718. DOI:10.1371/journal.pone.0210718.

Solovyev, D. A. (2018, September 19-23). Izmenenie klimata v rossiiskoi Arktike i ego vozdeistvie na priblezhnuyu infrastruktutu i ekonomiku regiona [Climate change in the Russian Arctic and its impact on the coastal infrastructure and economy of the region]. Morskie issledovaniya i ratsionalnoe prirodopolzovanie: Proceedings of the Youth scientific conference (pp. 369-371). Sevastopol.

Tilinina, N., Gavrikov, A., & Gulev, S.K. (2018). Association of the North Atlantic surface turbulent heat fluxes with midlatitude cyclones. Monthly Weather Review, 11(146), 3691–3715.

Vignali, V., Acerra, E. M., Lantieri, C., Di Vincenzo, F., Piacentini, G., & Pancaldi, S. (2021). Building information Modelling (BIM) application for an existing road infrastructure. Automation in Construction, 128, 103752. DOI:10.1016/j.autcon.2021.103752.

Younis, M., Kahsay, M. T., & Bitsuamlak, G. T. (2020). BIM-cfd integrated sustainable and resilient building design for northern architecture. Ashrae Topical Conference Proceedings (pp. 584–591).