Innovative biomimetic parametric timber structures Authors Kachana Kasulu RUDN University Olga Volichenko RUDN University Philipp Abramyan RUDN University Beisen Kariev Kyrgyz-Russian Slavic University named after the First President B. N. Yeltsin Downloads PDF (Русский) DOI: https://doi.org/10.51461/issn.2309-3072/86.2679 Keywords: Biomimicry, Parametric Design, Engineered Timber, Digital Fabrication, Sustainability, Computational Architecture, Structural Innovation, Ecological Design, Morphological Intelligence Abstract This article examines the integration of biomimetic principles and parametric methods with engineered timber in architectural design. Analysing Metropol Parasol, Pompidou-Metz, Pulp Pavilion, ITECH, and Bowooss pavilions shows how biological analogues inspire innovative timber forms. Parametric tools mediate biomimetic logic into efficient, responsive designs. Digital fabrication enhances the versatility, sustainability, and complexity of timber. The study establishes a validated taxonomy that links theory and practice, promoting biomimetic-parametric synergy and interdisciplinary, bio-informed design approaches.. How to Cite Kasulu, K., Volichenko, O., Abramyan, P., & Kariev, B. (2025). Innovative biomimetic parametric timber structures. Project Baikal, 22(86). https://doi.org/10.51461/issn.2309-3072/86.2679 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Published 2025-12-09 Issue No. 86 (2025): diversity Section refereed articles License Copyright (c) 2025 Качана Касулу, Ольга Воличенко, Филипп Абрамян, Бейсен Кариев This work is licensed under a Creative Commons Attribution 4.0 International License. References Benyus, J. M. (2009). Biomimicry: Innovation inspired by nature (Nachdr.). Perennial. Durai Prabhakaran, R. T., Spear, M. J., Curling, S., Wootton-Beard, P., Jones, P., Donnison, I., & Ormondroyd, G. A. (2019). Plants and architecture: The role of biology and biomimetics in materials development for buildings. Intelligent Buildings International, 11(3–4), 178–211. https://doi.org/10.1080/17508975.2019.1669134 Eversmann, P., Gramazio, F., & Kohler, M. (2017). Robotic prefabrication of timber structures: Towards automated large-scale spatial assembly. Construction Robotics, 1(1), 49–60. https://doi.org/10.1007/s41693- 017-0006-2 Green, M. (2012). The case for tall wood buildings. Canadian Wood Council. https://cwc.ca/wp-content/uploads/2020/06/Second-Edition- The-Case-for-Tall-Wood-Buildings.pdf Knippers, J., Nickel, K. G., & Speck, T. (Eds.). (2016). Biomimetic research for architecture and building construction (Vol. 8). Springer International Publishing. https://doi.org/10.1007/978-3-319-46374-2 Lehmann, S., & Kremer, P. D. (2023). Filling the Knowledge Gaps in Mass Timber Construction: Where are the Missing Pieces, What are the Research Needs? (Vol. 6). Menges, A. (2015). The new cyber-physical making in architecture: Computational construction. Architectural Design, 85(5), 28–33. https:// doi.org/10.1002/ad.1950 Menges, A., & Knippers, J. (2015). Fibrous tectonics. Architectural Design, 85(5), 40–47. https://doi.org/10.1002/ad.1952 Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies, 52, 4–39. https://doi. org/10.1016/j.destud.2017.06.001 Oxman, R., & Oxman, R. (2010). New structuralism: Design, engineering and architectural technologies. Architectural Design, 80(4), 14–23. https://doi.org/10.1002/ad.1101 Pawlyn, M. (2019). Biomimicry in architecture (2nd ed.). RIBA Publishing. https://doi.org/10.4324/9780429346774 Schumacher, P. (2016). Parametricism 2. 0: Gearing up to impact the global built environment. Architectural Design, 86(2), 8–17. https://doi. org/10.1002/ad.2018